Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees.

نویسندگان

  • Davide Raccuglia
  • Uli Mueller
چکیده

Throughout the animal kingdom, the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two different approaches to activate GABA receptors during appetitive olfactory conditioning in the honeybee. Injection of GABA-A receptor agonist muscimol 20 min before but not 20 min after associative conditioning affects memory performance. These memory deficits were attenuated by additional training sessions. Muscimol has no effect on sensory perception, odor generalization, and nonassociative learning, indicating a specific role of GABA during associative conditioning. We used photolytic uncaging of GABA to identify the GABA-sensitive time window during the short pairing of the conditioned stimulus (CS) and the unconditioned stimulus (US) that lasts only seconds. Either uncaging of GABA in the antennal lobes or the mushroom bodies during the CS presentation of the CS-US pairing impairs memory formation, while uncaging GABA during the US phase has no effect on memory. Uncaging GABA during the CS presentation in memory retrieval also has no effect. Thus, in honeybee appetitive olfactory learning GABA specifically interferes with the integration of CS and US during associative conditioning and exerts a modulatory role in memory formation depending on the training strength.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief Communication Focal and Temporal Release of Glutamate in the Mushroom Bodies Improves Olfactory Memory in Apis mellifera

In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally define...

متن کامل

Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally define...

متن کامل

Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera).

The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that...

متن کامل

Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.

Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural ...

متن کامل

Temporal integration of cholinergic and GABAergic inputs in isolated insect mushroom body neurons exposes pairing-specific signal processing.

GABAergic modulation of neuronal activity plays a crucial role in physiological processes including learning and memory in both insects and mammals. During olfactory learning in honeybees (Apis mellifera) and Drosophila melanogaster the temporal relation between excitatory cholinergic and inhibitory GABAergic inputs critically affects learning. However, the cellular mechanisms of temporal integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2013